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Abstract

This study aimed to investigate the presence of polymorphonuclear neutrophils (PMNs) in bovine oviduct fluid under physiological

conditions and to determine the possible role of bovine oviduct epithelial cells (BOECs) in the regulation of the phagocytic activity of

PMNs for sperm. During the pre-ovulatory stage, PMNs were identified in the bovine oviduct fluid in relatively constant numbers. In our

experiments, PMNs were incubated for 4 h with the supernatant of cultured BOECs stimulated for 24 h by LH (10 ng/ml). Phagocytosis

was then assayed by co-incubation of these PMNs with sperm treated to induce capacitation. The BOEC supernatant significantly

suppressed sperm phagocytosis by PMNs, and the LH-stimulated BOEC supernatant further suppressed phagocytosis. Importantly, in

the BOEC culture, LH stimulated the secretion of prostaglandin E2 (PGE2), which dose-dependently (10K6, 10K7, and 10K8 M)

suppressed sperm phagocytosis by PMNs. Furthermore, a PGEP2 receptor antagonist significantly abrogated the inhibition of

phagocytosis by the LH-stimulated BOEC supernatant. Additionally, using scanning electron microscopy, incubation of PMNs with either

PGE2 or LH-stimulated BOEC supernatant before phagocytosis was found to prevent the formation of DNA-based neutrophil

extracellular traps for sperm entanglement. The results indicate that sperm are exposed to PMNs in the oviduct and PGE2 released into

the oviduct fluid after LH stimulation may play a major role in the suppression of the phagocytic activity of PMNs for sperm via

interaction with EP2 receptors. Thus, the bovine oviduct provides a PGE2-rich microenvironment to protect sperm from phagocytosis by

PMNs, thereby supporting sperm survival in the oviduct.
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Introduction

The oviduct plays a pivotal role in mammalian
reproduction, providing an optimal environment for
oocyte maturation, sperm capacitation, fertilization, and
gamete and embryo transport (Ellington 1991, Hunter
2012). Anatomically, the oviduct is a thin convoluted
tube that opens into the uterine horn on one end and into
the peritoneal cavity on the other end. Therefore, the
oviduct milieu represents a unique immunological site
that supports a delicate balance between protecting the
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oviduct from infection by potentially pathogenic ascend-
ing microorganisms and maintaining a permissive
environment for the survival of allogeneic sperm and
semi-allogeneic embryos. However, little is known
about how the oviduct immune system interacts with
the allogeneic sperm and semi-allogeneic embryos.

Oviduct epithelial cells secrete a variety of molecules,
including oviductal glycoproteins (Abe et al. 1995),
bicarbonate ions, and oviductin (Boatman 1997), that
provide an optimal environment for sperm survival in the
oviduct (Parrish et al. 1989, Ellington 1991). Luteinizing
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hormone (LH) is able to directly regulate the proliferative
and secretory functions of the bovine oviduct through
binding to its receptors on bovine oviduct epithelial
cells (BOECs) (Sun et al. 1997, Mishra et al. 2003).
In addition, LH stimulates the production of vasoactive
peptides and angiogenic factor and vascular endothelial
growth factor, which in turn stimulate the secretion of
prostaglandin (PG) and tubal contraction in the bovine
oviduct (Wijayagunawardane et al. 2001a, 2001b,
2005). These studies reveal that LH basically stimulates
various secretions from BOECs, thereby inducing
PG secretion.

After insemination in cows, either naturally or
artificially, large numbers of sperm (several billions or
5–40!106) are deposited in the vagina or uterine body
respectively (Lopez-Gatius 2000, Vishwanath 2003,
Suarez 2007), but only a limited number (hundreds to
thousands) reach the oviduct (Mitchell et al. 1985,
Sostaric et al. 2008). Most of them are lost in the vagina,
cervix, or uterus by backflow, degradation, and
phagocytosis by polymorphonuclear neutrophils
(PMNs; Strzemienski 1989). Insemination triggers a
massive recruitment of PMNs into the uterine lumen
(Mattner 1968, Strzemienski 1989, Alghamdi et al. 2009).
The mechanism by which neutrophils phagocytize sperm
is similar to that for bacteria (Alghamdi & Foster 2005).
Thus, neutrophils either directly phagocytize sperm
through cell–cell attachment or entrap them with
neutrophil extracellular traps (NETs), structures consist-
ing of neutrophil nuclear DNA and associated proteins,
which ensnare sperm and hinder their motility (Alghamdi
& Foster 2005, Alghamdi et al. 2009). On the other hand,
it has been shown that equine seminal plasma (SP)
prevents the formation of NETs (Alghamdi & Foster 2005,
Alghamdi et al. 2009). Moreover, it has been found
by Doty et al. (2011) that CRISP3 protein in equine SP is
the factor that suppresses PMN and sperm binding and
regulates sperm degradation.

Once sperm escape from phagocytosis by uterine
PMNs and reach the oviduct, sperm reservoirs are
formed where sperm undergo capacitation (Suarez
2008). Thus, the oviduct provides a microenvironment
for sperm capacitation (Hunter & Nichol 1986,
Rodriguez-Martinez 2007). After capacitation, sperm
are sequentially released from the reservoirs (Hunter &
Léglise 1971, Suarez 2008) and are rapidly transported
to the fertilization site where the oviduct micro-
environment supports the viability of sperm population
for more than 24 h until ovulation. Sperm viability
until ovulation is manifested by prolonged motility
and fertility (Talevi & Gualtieri 2004, Chang & Suarez
2012). It has been shown that in humans (Haney et al.
1983), cats (Murakami et al. 1985), and mice
(Chakraborty & Nelson 1975) the superfluous sperm
that remain in the oviduct after ovulation are
eliminated through phagocytosis by epithelial and
immune cells. However, in cows, the presence of such
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immune cells, their interaction with stored sperm, and
the possible regulators of the local immune microenvir-
onment in the oviduct have not been investigated yet.
We have recently provided evidence that BOECs
efficiently control the balance between Th1 and Th2
cytokines (Kowsar et al. 2013). As such, in the present
study, we investigated the presence of PMNs in the
bovine oviduct fluid and the possible role of oviduct
epithelial cells in the regulation of phagocytic activity of
PMNs for sperm.
Materials and methods

Oviduct collection and preparation

Oviducts along with their ipsilateral ovaries were collected
from a local slaughterhouse, and they were perfectly closed
from both ends to prevent the leakage or contamination of
oviductal contents. The stage of estrous cycle was determined
macroscopically by ovarian morphology by observing the
color, size, and weight of the corpus luteum as described
previously (Wijayagunawardane et al. 1998). Furthermore,
oviducts as well as attached uteri were macroscopically
examined to be healthy and free from any infections. After
that, oviducts were immersed in PBS without calcium or
magnesium (PBSK/K) supplemented with 0.3% gentamicin
(Sigma–Aldrich) and amphotericin B (Sigma-Aldrich) and
transported to the laboratory. In the laboratory, oviducts were
cut, separated from the connective tissue, and externally rinsed
three times with PBSK/K.
Identification of PMNs in the oviduct fluid

Within 15 min of killing in the slaughterhouse, 14 oviducts at
pre-ovulatory stage were collected. Oviducts were perfectly
closed from the uterine end and then separated by making
an incision through the uterine horn 10 cm away from the
uterotubal junction. Oviducts were separated from the
surrounding connective tissue. A blunt needle (20 gauge) was
inserted from the uterine end of the oviducts and gently flushed
with PBSK/K (2 ml/oviduct), and the resultant fluid was pooled
in a sterile tube. In the laboratory, leukocytes were isolated
from the oviduct flushes according to the protocol of Cotter &
Muruve (2006) with minor modifications. Basically, the
collected fluid was passed through a 40 mm pore cell strainer
(BD Biosciences, Durham, NC, USA) and centrifuged at 300 g
for 6 min at 20 8C. To purify leukocytes, the cell pellet was then
suspended in 10 ml of 35% Percoll (Sigma–Aldrich) and
centrifuged at 360 g for 10 min at 20 8C. After supernatant
removal, the leukocyte pellet was washed with 5 ml PBSK/K

and suspended in 1 ml PBSK/K. Giemsa-stained PMNs were
detected using a light microscope (two to five nuclear and finely
granular lobes). For a total cell count, a sample of the leukocyte
suspension was diluted (1:10) with 0.1% acetic acid (Sigma–
Aldrich) and mounted on a hemocytometer. To determine PMN
proportions in leukocyte populations, a 20 ml sample of the
leukocyte suspension was diluted in MACS separation buffer
(MACS Miltenyi Biotec, Tokyo, Japan) and analyzed by flow
cytometric evaluation (Beckman Coulter, Inc., Miami, FL, USA).
www.reproduction-online.org
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Culture of BOECs and hormonal stimulation

The isolation and culture of BOECs were based on the
method described previously (Wijayagunawardane et al.
1999, 2005) with minor modifications. Briefly, BOECs were
mechanically dislodged, purified, and cultured in DMEM/F12
(Gibco; supplemented with 2.2% NaHCO3, 0.1% gentamicin,
1% amphotericin, and 10% FCS; BioWhittaker, Walkersville,
MD, USA) in six-well culture dishes (Nalge Nunc International,
Roskilde, Denmark) until monolayer formation. The cells were
incubated at 38.5 8C in 5% CO2 and 95% air, and these
incubation conditions were kept constant for all the cells
(BOECs, sperm, and PMNs) throughout all the experiments.
After monolayer formation, the cells were trypsinized
(0.05% trypsin EDTA; Amresco, Solon, OH, USA), re-plated
in six-well culture dishes at a density of 3!104 cells/ml, and
cultured until subconfluence. The growing BOEC monolayer
was then cultured in a medium supplemented with 0.1% FCS
and incubated for 24 h with LH (10 ng/ml, USDA-bLH-B6,
NHPP, Animal Hormone Program, Bethesda, MD, USA).
Finally, the culture medium was collected and stored at
K80 8C until use. The cells were collected, and cell viability
was estimated using Trypan Blue staining and was confirmed
to be more than 95% at each time point of plating as well as at
the end of the experiment. The purity of BOECs was confirmed
by anti-cytokeratin 1 immunostaining and by characteristic
epithelial morphology.
Preparation of PMNs

Isolation of PMNs

PMNs were isolated as described previously (Jiemtaweeboon
et al. 2011) with minor modifications. Blood collection
experiments were conducted at the Field Center of Animal
Science and Agriculture of Obihiro University, and all the
experimental procedures were carried out in compliance with
the Guidelines for the Care and Use of Agricultural Animals at
Obihiro University. Heparinized blood from a multiparous
Holstein cow in luteal stage was collected and mixed with an
equal volume of PBSK/K, slowly layered over Ficoll-Paque
solution (Lymphoprep, Axis Shield, Oslo, Norway), and
centrifuged at 1000 g for 30 min at 10 8C. PMN layer was
mixed with ammonium chloride lysis buffer (NH4Cl, 155 mM;
KHCO3, 3.4 mM; and EDTA, 96.7 mM) for 10 s and then
centrifuged at 500 g for 10 min at 10 8C to purify PMNs from
red blood cells. After centrifugation, the cell pellet was washed
two times with PBSK/K. The purity of PMNs as evaluated by
flow cytometry was O98%, and the viability was around 99%
as assessed by Trypan Blue staining.

Incubation of PMNs

Before the phagocytosis assay, PMNs were suspended at a
density of 1!107 cells/ml with BOEC supernatant in a culture
tube and incubated for 4 h with gentle shaking. The
supernatant of BOECs either with or without LH stimulation
was obtained by centrifugation of BOEC culture medium at
1000 g for 10 min to remove any cells or debris. The most
upper 70–80% of the supernatant was used for PMN culture.
www.reproduction-online.org
After PMN incubation, PMNs were washed two times with
PBSK/K and used for the phagocytosis assay.
Preparation of sperm

In parallel with PMN preparation, sperm preparation was
carried out. Frozen semen straws were obtained from three
highly fertile Holstein bulls of Genetics Hokkaido Association
(Hokkaido, Japan). All semen straws were obtained from a single
ejaculate from each bull separately. In vitro capacitation of bull
sperm was induced using modified Tyrode’s albumin, lactate,
and pyruvate medium (Sp-TALP), according to the method
described previously (Parrish et al. 1988, 1989) with minor
modifications. Briefly, two semen straws from each bull were
thawed in a cytothaw for 60 s and mixed in 5 ml Sp-TALP. Then,
1-h swim-up was carried out to obtain highly active and motile
sperm. Sperm concentration was adjusted to 50!106 sperm/ml
in Sp-TALP, and sperm were capacitated by 4 h of incubation
in Sp-TALP medium supplemented with 10 mg/ml heparin.
Capacitation was confirmed by the induction of acrosome
reactions using 100 mg/ml lysophosphatidylcholine for 15 min.
Acrosome reactions were detected by performing a dual staining
procedure with Trypan Blue supravital stain and Giemsa stain as
described by Kovacs & Foote (1992). After capacitation, sperm
were washed and suspended in Tyrode’s medium containing
lactate, pyruvate, and HEPES (TL-HEPES; Bavister et al. 1983,
Guthrie et al. 2002) and were then used for the phagocytosis
assay. The term ‘treated sperm’ is used throughout the article to
refer to sperm treated to induce capacitation.
Phagocytosis assay

Phagocytosis assay of sperm phagocytosis by PMNs was
performed according to the method of Matthijs et al. (2000)
with minor modifications. Briefly, the 4-h incubated PMNs were
suspended in TL-HEPES. PMN suspension was mixed with
sperm suspension and serum in a 96-well untreated polystyrene
microtest plate (Thermo Scientific, Roskilde, Denmark) and
incubated for 60 min with gentle swirling on a test-plate shaker.
The final concentrations of PMNs, sperm, and fresh serum were
8!106, 4!106 cells/ml, and 12% (v/v) respectively, and the
total volume was 100 ml. After incubation, an equal volume of
heparin (40 mg/ml in TL-HEPES) was added to facilitate the
dissociation of agglutinated PMNs. Subsamples of 75 ml were
fixed by adding 25 ml of 2% (v/v) glutaraldehyde. The fixed
samples were mounted on the glass slides and examined under
a phase-contrast microscope at !400 magnification connected
to a digital camera and a computer system (Leica Application
Suite, Germany). Minimally, 400 PMNs were counted in
different areas of the specimen. The percentage of PMNs with
phagocytized sperm was recorded as phagocytosis rate.
Quantification of the number of PMNs with phagocytized
sperm was carried out independently by two observers.
PGE2 concentration determination

PGE2 concentrations were measured directly in the oviduct
fluid and BEOC supernatant using second antibody enzyme
immunoassay as described previously (Wijayagunawardane
Reproduction (2014) 147 211–219
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et al. 1998). In this experiment, 14 oviducts (pre-ovulatory,
nZ4; post-ovulatory, nZ5; and mid-luteal, nZ5) and 12 BOEC
supernatants (with LH stimulation, nZ6 and without LH

stimulation, nZ6) were used. The values of coefficients of
variance within assay and between assay were 7.3 and 11.4%
respectively. The ED50 values were 260 pg/ml and the ranges

of the standard curves for these assays were 20–20 000 pg/ml.
Scanning electron microscopy

Neutrophils (1!107 cells/ml) were incubated in culture
medium without any stimulus, with PGE2 (10K7 M), or with
LH-stimulated BOEC supernatant for 4 h, and phagocytosis

was assayed. For scanning electron microscopy (SEM), each
sample after phagocytosis was put on a cover glass coated
with 0.1% neoprene in toluene, dried at room temperature, and

fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer
(PB, pH 7.4). After fixation, the samples were washed in PB,
post-fixed in 1% osmium tetroxide in PB, and dehydrated in a

graded series of ethanol. The specimens were then freeze-dried
with t-butyl alcohol using a freeze dryer (ES-2030, Hitachi).
Each dried sample was mounted on a specimen stub with
the cover glass and sputter coated with platinum (ion sputter

coater E-1045, Hitachi). The specimens were observed using
a scanning electron microscope (S3400N, Hitachi) at an
accelerating voltage of 5 kV.
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Figure 1 (a) Flow cytometric analysis of PMNs ratio in the oviduct fluid.
(b and c) Light micrographs (!400) of PMNs in the oviduct fluid (two to
five nuclear and finely granular lobes).
Experimental design

Effect of BOEC supernatant on the phagocytic activity

of PMNs for sperm

PMNs were incubated in the BOEC supernatant either with
or without LH stimulation for 4 h. Furthermore, PMNs were
incubated in fresh medium and kept as control. As long as

LH was one of the constituents of the LH-stimulated BOEC
supernatant, another group was prepared by direct stimulation
of PMNs with LH (10 ng/ml in fresh medium). After 4 h of incu-
bation of PMNs, phagocytosis of treated sperm was assayed.

Dose-dependent effect of PGE2 on
the phagocytic activity of PMNs for sperm

To investigate the effects of PGE2 on the phagocytic activity of
PMNs for sperm, PMNs were exposed to different concen-

trations of PGE2 (10K6, 10K7, and 10K8 M; Sigma–Aldrich) for
4 h. Then, phagocytosis of treated sperm was assayed.

Effect of EP2 receptor antagonist on the phagocytic activity of
PMNs for sperm

An EP2 receptor antagonist (AH6809, Cayman Chemical,

Ann Arbor, MI, USA) was used to block the effect of PGE2

on the phagocytic activity of PMNs for sperm. First, PMNs
were cultured with AH6809 (10K5 M) alone for 1 h, followed

by further 3 h of incubation together with PGE2 (10K7 M).
Additionally, in the same way, AH6809 (10K5 M) was cultured
with the BOEC supernatant. Then, phagocytosis of treated
sperm was assayed.
Reproduction (2014) 147 211–219
Statistical analyses

Data are presented as meansGS.E.M. of three to eight
experiments. Statistical analyses were carried out using Stat-
View 5.0 (SAS Institute, Inc., Cary, NC, USA). Statistical
significance between the groups was determined using t-test
(for two groups) or one-way ANOVA followed by multiple
comparison test (Fisher’s test for three groups and Bonferroni’s
test for more than three groups), and all results were considered
to be statistically significant at P!0.05.
Results

Identification of PMNs in the oviduct fluid

Little is known about the oviduct local immunological
microenvironment including PMNs and how oviductal
PMNs interact with sperm. To determine the existence of
PMNs in the oviduct, we collected immune cells from
the oviduct lumen by flushing it with PBSK/K within
15 min of killing. During the pre-ovulatory stage, PMNs
were present in the bovine oviduct fluid in constant
numbers (average 3–5!103 cells/oviduct flush),
constituting w17% of the total leukocyte population in
the oviduct flush, whereas lymphocytes represented
w23% of the total leukocyte count (Fig. 1).
Effect of BOEC supernatant on the phagocytic activity of
PMNs for sperm

Oviduct provides the optimal environment for sperm
survival (Ellington 1991). Therefore, this experiment was
conducted to investigate the possible role of oviduct
epithelial cells in the regulation of the phagocytic
activity of PMNs for sperm. No differences were
observed in the phagocytic activity of PMNs for sperm
throughout the cycle (data not shown). Thus, all blood
samples were collected during the luteal stage for the
series of experiments. Direct incubation of PMNs with
LH, 10 ng/ml, for 4 h before the phagocytosis assay did
not affect their phagocytic activity for sperm (Fig. 2).
Meanwhile, incubation of PMNs in the BOEC
supernatant resulted in a significant decrease (P!0.05)
in their phagocytic activity for the treated sperm.
Furthermore, incubation in the LH-stimulated BOEC
supernatant resulted in a further decrease (P!0.001) in
their phagocytic activity.
www.reproduction-online.org
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PGE2 concentrations in the oviduct fluid and
BOEC culture

PGE2 is known as an immunosuppressive factor (Kalinski
2012). Thus, this experiment was conducted to determine
PGE2 concentrations in the oviduct fluid during the peri-
ovulatory period and in the LH-stimulated BOEC
supernatant. In the oviduct fluid (Fig. 3a), PGE2

concentrations during the pre-ovulatory (P!0.03) and
post-ovulatory (P!0.06) stages were three to four times
higher than that during the mid-luteal stage. In the BOEC
supernatant (Fig. 3b), the ratio of PGE2 secretion by
BOECs (16.2G3.4 ng/ml, meanGS.E.M.) was significantly
(P!0.05) enhanced by LH stimulation.
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Dose-dependent effect of PGE2 on the phagocytic
activity of PMNs for sperm

It has been shown that PGE2 inhibits the phagocytic
activity of neutrophils in guinea pigs (Smith 1977). This
experiment was conducted to investigate the effects of
PGE2 as a major secretory product of BOECs on the
phagocytic activity of PMNs for sperm. Incubation of
PMNs with PGE2 (10K6 MZ352 ng/ml, 10K7, and
10K8 M) for 4 h before the phagocytosis assay resulted
in a dose-dependent decrease in the phagocytic activity
of PMNs for the treated sperm (Fig. 4). These concen-
trations were considered comparable to the PGE2 con-
centrations in the oviduct fluid (10K8 MZ3.52 ng/ml) and
BOEC supernatant (10K7 MZ35.2 ng/ml) detected
in our experiment and those in the oviduct tissue
extract (10K6 MZ352 ng/ml) previously detected by
Wijayagunawardane et al. (1998).
estrous cycle: pre-ovul, pre-ovulatory phase (nZ4); post-ovul, post-
ovulatory phase (nZ5); and mid-luteal phase (nZ5). (b) Percentage of
PGE2 concentrations in the BOEC culture stimulated with 10 ng/ml LH
(BOECCLH) or without any stimulant (BOEC) (100%Z16.2G3.4 ng/ml,
meansGS.E.M.). Numerical values are presented as meansGS.E.M. of four
to six experiments. The different letters indicate a significant difference
between the marked treatments at P!0.05.
Effect of EP2 receptor antagonist on the phagocytic
activity of PMNs for sperm

PGE2 has been shown to suppress the functions of human
neutrophils via EP2 receptors (Talpain et al. 1995, Burelout
www.reproduction-online.org
et al. 2004). Thus, this experiment was conducted to
investigate whether PGE2 is one of the factors involved in
the suppressive activity of the BOEC supernatant on sperm
phagocytosis by PMNs. The EP2 receptor antagonist
significantly (P!0.05) abrogated the suppressive effect of
PGE2 on sperm phagocytosis by PMNs (Fig. 5a). Moreover,
incubation of PMNs in the LH-stimulated BOEC super-
natant supplemented with EP2 receptor antagonist signi-
ficantly (P!0.05) reversed the supernatant’s inhibitory
effect on sperm phagocytosis by PMNs (Fig. 5b).
Observation of NETs formation by SEM

Neutrophils either directly phagocytize sperm through
cell–cell attachment or entrap them with NETs and the
latter is mainly detected by SEM (Alghamdi & Foster
2005). Therefore, SEM was used to investigate the effect
of the BOEC supernatant on NETs formation by PMNs for
sperm entanglement. During the phagocytosis assay, the
addition of sperm to PMNs induced NETs formation
(Fig. 6c and d) compared with that without sperm (Fig. 6a
and b). Incubation of PMNs with either PGE2 (10K7 M;
Fig. 6e and f) or LH-stimulated BOEC supernatant
(Fig. 6g and h) before the phagocytosis assay resulted
in the reduction of NETs formation by PMNs for sperm
entanglement.
Discussion

The present data indicate that relatively constant
numbers of PMNs exist in the oviduct fluid during the
pre-ovulatory stage under physiological conditions,
suggesting that the oviductal PMNs contribute to the
local innate immunity mechanisms that protect the
oviduct from potentially pathogenic microorganisms.
These results together with the fact that the oviduct
Reproduction (2014) 147 211–219
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creates the optimal microenvironment for the survival of
allogeneic sperm prompted us to investigate the effect
of the oviduct secretions on the phagocytic activity of
PMNs for sperm.

The results indicated that incubation of PMNs with the
BOEC supernatant, for 4 h before the phagocytosis assay,
resulted in the suppression of their phagocytic activity for
the treated sperm. Moreover, incubation of PMNs with
the LH-stimulated BOEC supernatant caused further
reduction of the phagocytic activity of PMNs for sperm.
Using SEM, we found that the LH-stimulated BOEC
supernatant not only suppressed the phagocytic activity
of PMNs for sperm but also reduced the formation of
NETs, leading to the protection of sperm from being
trapped and degraded by PMNs. The present findings
suggest that factors secreted by BOECs can suppress the
phagocytic activity of PMNs for the treated sperm via
reduction of NETs formation, especially during the pre-
ovulatory stage characterized by the increased LH levels
(LH surge). Thus, BOECs work on the phagocytic
activity of oviductal PMNs to create an optimal
microenvironment for the survival of sperm.

In fact, we found that PGE2 levels in the oviduct fluid
during the peri-ovulatory stage were three to four times
higher than that during the mid-luteal stage and LH
stimulated PGE2 secretion in the BOEC culture. PGE2 is
an immunosuppressive factor (Kalinski 2012) that has
been shown to inhibit the phagocytic activity of
neutrophils and macrophages in guinea pigs (Smith
1977) and mice (Aronoff et al. 2004) respectively. Thus,
we speculated that the PGE2 secreted by BOECs is one of
the factors that contribute to the suppressive effect of the
BOEC supernatant on the phagocytic activity of PMNs
for sperm. In support of this idea, the results indicated
that PGE2 dose dependently suppressed sperm
Reproduction (2014) 147 211–219
phagocytosis by PMNs. Additionally, SEM analysis
demonstrated that PGE2 significantly reduced the
formation of NETs and suppressed the phagocytosis of
sperm by PMNs, as observed in PMNs treated with the
LH-stimulated BOEC supernatant. Moreover, sperm
stimulate the secretion of PGE2 by cultured BOECs
(Kodithuwakku et al. 2007). Thus, in addition to the
action of LH, sperm may have a self-protective
mechanism by the suppression of the phagocytic activity
of PMNs through further enhancement of PGE2 secretion
in the microenvironment surrounding them.
www.reproduction-online.org
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Figure 6 SEM observation of sperm phagocytosis by PMNs. PMNs were
incubated with culture medium without any stimulant, with PGE2

(10K7 M), or with LH-stimulated BOEC supernatant for 4 h followed by
1-h phagocytosis assay. Upon the phagocytosis assay, addition of sperm
to PMNs induced NETs formation (c and d) compared with that without
the addition of sperm (a and b). Furthermore, incubation of PMNs either
with PGE2 (10K7 M; e and f) or with LH-stimulated BOEC supernatant
(g and h) before the phagocytosis assay resulted in the reduction of
NETs formation by PMNs for sperm entanglement.

Sperm phagocytosis by PMNs in bovine oviduct 217
PGE2 has been shown to have both pro- and anti-
inflammatory effects depending on the activation of the
respective PGE2 receptors (E-prostanoid (EP)), designated
as EP1, EP2, EP3, and EP4 (Hata & Breyer 2004). Signaling
through EP2 and EP4 mediates the dominant aspects of
the PGE2 anti-inflammatory and suppressive activity
(Regan et al. 1994, Fujino et al. 2005). Thus, PGE2 has
been shown to suppress the functions of human
neutrophils via EP2 receptors (Talpain et al. 1995,
Burelout et al. 2004). The data obtained in the present
study show that the EP2 receptor antagonist abrogated
the suppressive effects of both PGE2 and the
LH-stimulated BOEC supernatant on the phagocytic
activity of PMNs for sperm. These findings indicate that
the mechanism of inhibition of phagocytosis by BOEC-
secreted factors partly depends on the PGE2 interaction
with EP2 receptors on PMNs.

It has been clearly demonstrated that neutrophils
either directly phagocytize sperm through cell–cell
www.reproduction-online.org
attachment or entrap them with NETs (Alghamdi &
Foster 2005). Accordingly, the factors that suppress
sperm phagocytosis by neutrophils may manifest their
impact by discouraging both cell–cell attachment and
NETs formation. Our results showed that PGE2 and
LH-stimulated BOEC supernatant clearly reduced NETs
formation and suppressed direct phagocytosis.
Therefore, we think that the reduction of NETs formation
led to a decrease in the chances of direct phagocytosis
of sperm by PMNs. These observations may account for
a better understanding of the mechanism of suppression
of sperm phagocytosis. Moreover, PGE2 has been shown
to inhibit the formyl-methionyl-leucyl-phenylalanine-
induced phospholipase D (PLD) activity pathway in
human neutrophils via EP2 receptors (Burelout et al.
2004). The PLD pathway regulates cell responses such
as phagocytosis (Lennartz 1999), secretions, and pro-
duction of superoxide anions by the NADPH oxidase
complex (Liscovitch et al. 2000) in human neutrophils.
We hypothesize that PGE2 via EP2 receptors could
affect sperm phagocytosis by neutrophils through the
inhibition of the PLD pathway, which in turn changes
the phagocytic behavior of PMNs for sperm.

The interaction of bacterial pathogens with human
neutrophils results in the induction of phagocytosis
of bacteria followed by global changes in PMN
gene expression for pro-inflammatory (TNF (TNFa)
and IL1B (IL1b)) and anti-inflammatory (IL10) cytokines
(Kobayashi et al. 2003). Surprisingly, in our study, the
BOEC supernatant suppressed the phagocytic activity
of PMNs for sperm without any changes in the
gene expression of the above-mentioned cytokines
(M A Marey and A Miyamoto 2013, unpublished data).
It is speculated that the factors regulating the phago-
cytosis of sperm by PMNs may be completely different
from those involved in the phagocytosis of pathogenic
microorganisms. Further investigations are needed to
fully understand the possible regulatory mechanisms of
phagocytosis of sperm and pathogenic microorganisms
by PMNs in the oviduct.

Taken together, the results indicate that during the pre-
ovulatory stage sperm are exposed to PMNs in the
bovine oviduct and PGE2 released into the oviduct fluid
after LH stimulation may play a major role in the
suppression of the phagocytic activity of PMNs for sperm
via interaction with EP2 receptors. Thus, it is concluded
that the bovine oviduct provides a PGE2-rich micro-
environment to protect sperm from phagocytosis by
PMNs, thereby supporting sperm survival to increase the
chances of fertilization.
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